浅谈对pytroch中torch.autograd.backward的思考

(编辑:jimmy 日期: 2024/9/24 浏览:2)

反向传递法则是深度学习中最为重要的一部分,torch中的backward可以对计算图中的梯度进行计算和累积

这里通过一段程序来演示基本的backward操作以及需要注意的地方

> import torch
> from torch.autograd import Variable

> x = Variable(torch.ones(2,2), requires_grad=True)
> y = x + 2
> y.grad_fn
Out[6]: <torch.autograd.function.AddConstantBackward at 0x229e7068138>
> y.grad

> z = y*y*3
> z.grad_fn
Out[9]: <torch.autograd.function.MulConstantBackward at 0x229e86cc5e8>
> z
Out[10]: 
Variable containing:
 27 27
 27 27
[torch.FloatTensor of size 2x2]
> out = z.mean()
> out.grad_fn
Out[12]: <torch.autograd.function.MeanBackward at 0x229e86cc408>
> out.backward()   # 这里因为out为scalar标量,所以参数不需要填写
> x.grad
Out[19]: 
Variable containing:
 4.5000 4.5000
 4.5000 4.5000
[torch.FloatTensor of size 2x2]
> out  # out为标量
Out[20]: 
Variable containing:
 27
[torch.FloatTensor of size 1]

> x = Variable(torch.Tensor([2,2,2]), requires_grad=True)
> y = x*2
> y
Out[52]: 
Variable containing:
 4
 4
 4
[torch.FloatTensor of size 3]
> y.backward() # 因为y输出为非标量,求向量间元素的梯度需要对所求的元素进行标注,用相同长度的序列进行标注
Traceback (most recent call last):
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 File "<ipython-input-53-95acac9c3254>", line 1, in <module>
  y.backward()
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\variable.py", line 156, in backward
  torch.autograd.backward(self, gradient, retain_graph, create_graph, retain_variables)
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 86, in backward
  grad_variables, create_graph = _make_grads(variables, grad_variables, create_graph)
 File "C:\Users\dell\Anaconda3\envs\my-pytorch\lib\site-packages\torch\autograd\__init__.py", line 34, in _make_grads
  raise RuntimeError("grad can be implicitly created only for scalar outputs")
RuntimeError: grad can be implicitly created only for scalar outputs

> y.backward(torch.FloatTensor([0.1, 1, 10]))
> x.grad        #注意这里的0.1,1.10为梯度求值比例
Out[55]: 
Variable containing:
 0.2000
 2.0000
 20.0000
[torch.FloatTensor of size 3]

> y.backward(torch.FloatTensor([0.1, 1, 10]))
> x.grad        # 梯度累积
Out[57]: 
Variable containing:
 0.4000
 4.0000
 40.0000
[torch.FloatTensor of size 3]

> x.grad.data.zero_() # 梯度累积进行清零
Out[60]: 
 0
 0
 0
[torch.FloatTensor of size 3]
> x.grad       # 累积为空
Out[61]: 
Variable containing:
 0
 0
 0
[torch.FloatTensor of size 3]
> y.backward(torch.FloatTensor([0.1, 1, 10]))
> x.grad
Out[63]: 
Variable containing:
 0.2000
 2.0000
 20.0000
[torch.FloatTensor of size 3]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?