docker挂载NVIDIA显卡运行pytorch的方法

(编辑:jimmy 日期: 2025/1/21 浏览:2)

写在前面:

  请参考之前的文章安装好CentOS、NVIDIA相关驱动及软件、docker及加速镜像。

  主机运行环境

$ uname -a
Linux CentOS 3.10.0-514.26.2.el7.x86_64 #1 SMP Tue Jul 4 15:04:05 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
$ cat /usr/local/cuda/version.txt
CUDA Version 8.0.61
$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR   6
#define CUDNN_MINOR   0
#define CUDNN_PATCHLEVEL 21
#define CUDNN_VERSION  (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
# NVIDIA 1080ti 

一、关于GPU的挂载

1. 在docker运行时指定device挂载

  先查看一下有哪些相关设备

$ ls -la /dev | grep nvidia
crw-rw-rw-  1 root root  195,  0 Nov 15 13:41 nvidia0
crw-rw-rw-  1 root root  195,  1 Nov 15 13:41 nvidia1
crw-rw-rw-  1 root root  195, 255 Nov 15 13:41 nvidiactl
crw-rw-rw-  1 root root  242,  0 Nov 15 13:41 nvidia-uvm
crw-rw-rw-  1 root root  242,  1 Nov 15 13:41 nvidia-uvm-tools

  电脑上装了两个显卡。我需要运行pytorch,dockerhub中pytorch官方镜像没有gpu支持,所以只能先pull一个anaconda镜像试试,后面可以编排成Dockerfile。

$ docker run -it -d --rm --name pytorch -v /home/qiyafei/pytorch:/mnt/home --privileged=true --device /dev/nvidia-uvm:/dev/nvidia-uvm --device /dev/nvidia1:/dev/nvidia1 --device /dev/nvidiactl:/dev/nvidiactl okwrtdsh/anaconda3 bash

  okwrtdsh的镜像似乎是针对他们实验室GPU环境的,有点过大了,不过勉强运行一下还是可以的。在容器内部还需要

安装pytorch:

$ conda install pytorch torchvision -c pytorch

  这里运行torch成功,但是加载显卡失败了,可能还是因为驱动不匹配的原因吧,需要重新安装驱动,暂时不做此尝试; 

二、通过nvidia-docker在docker内使用显卡

docker挂载NVIDIA显卡运行pytorch的方法

详细信息:https://github.com/NVIDIA/nvidia-docker

(1)安装nvidia-docker

  nvidia-docker其实是docker引擎的一个应用插件,专门面向NVIDIA GPU,因为docker引擎是不支持NVIDIA驱动的,安装插件后可以在用户层上直接使用cuda。具体看上图。这个图很形象,docker引擎的运行机制也表现出来了,就是在系统内核之上通过cgroup和namespace虚拟出一个容器OS的用户空间,我不清楚这是否运行在ring0上,但是cuda和应用确实可以使用了(虚拟化的问题,如果关心此类问题可以了解一些关于docker、kvm等等虚拟化的实现方式,目前是系统类比较火热的话题)

  下载rpm包:https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm

  这里也可以通过添加apt或者yum sourcelist的方式进行安装,但是我没有root权限,而且update容易引起docker重启,如果不是实验室的个人环境不推荐这么做,防止破坏别人正在运行的程序(之前公司一个小伙子就是在阿里云上进行了yum update,结果导致公司部分业务停了一个上午)。

$ sudo rpm -i nvidia-docker-1.0.1-1.x86_64.rpm && rm nvidia-docker-1.0.1-1.x86_64.rpm
$ sudo systemctl start nvidia-docker

(2)容器测试

  我们还需要NVIDIA官方提供的docker容器nvidia/cuda,里面已经编译安装了CUDA和CUDNN,或者直接run,缺少image的会自动pull。

$ docker pull nvidia/cuda
$ nvidia-docker run --rm nvidia/cuda nvidia-smi

   在容器内测试是可以成功使用nvidia显卡的:

docker挂载NVIDIA显卡运行pytorch的方法

(3)合适的镜像或者自制dockerfile

合适的镜像:这里推荐Floydhub的pytorch,注意对应的cuda和cudnn版本。

docker pull floydhub/pytorch:0.3.0-gpu.cuda8cudnn6-py3.22
nvidia-docker run -ti -d --rm floydhub/pytorch:0.3.0-gpu.cuda8cudnn6-py3.22 bash

docker挂载NVIDIA显卡运行pytorch的方法docker挂载NVIDIA显卡运行pytorch的方法  

三、关于一些bug

  这里有部分debian的配置,我照着dockerhub上anaconda镜像抄的,这里就不再配置了,反正跑起来后有镜像也可以用。系统随后可能会出现错误:

kernel:unregister_netdevice: waiting for lo to become free. Usage count = 1

docker挂载NVIDIA显卡运行pytorch的方法docker挂载NVIDIA显卡运行pytorch的方法  

  这个小哥给出了一个解决方案,至少他给出的错误原因我是相信的:是由内核的TCP套接字错误引发的。这里我给出一些思考,关于上面的结构图,在显卡上,通过nvidia-docker,docker之上的容器可以使用到底层显卡(驱动显然是在docker之下的),而TCP套接字,我猜测也是这种使用方法,而虚拟出来的dockerOS,应该是没有权限来访问宿主机内核的,至少内核限制了部分权限。这位小哥给出了测试内核,如果有兴趣可以去帮他测试一下:https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1711407/comments/46。

总结

以上所述是小编给大家介绍的docker挂载NVIDIA显卡运行pytorch的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?