如何利用分析函数改写范围判断自关联查询详解

(编辑:jimmy 日期: 2025/1/16 浏览:2)

前言

最近碰到一个单条SQL运行效率不佳导致数据库整体运行负载较高的问题。

分析、定位数据库的主要负载是这条语句引起的过程相对简单,通过AWR报告就可以比较容易的完成定位,这里就不赘述了。

现在直接看一下这个导致性能问题的SQL语句,其对应的SQL REPORT统计如下:

Stat Name Statement Total Per Execution % Snap Total Elapsed Time (ms) 363,741 363,740.78 8 .42 CPU Time (ms) 362,770 362,770.00 8 .81 Executions 1     Buffer Gets 756 756.00 0.00 Disk Reads 0 0.00 0.00 Parse Calls 1 1.00 0.01 Rows 50,825 50,825.00   User I/O Wait Time (ms) 0   Cluster Wait Time (ms) 0     Application Wait Time (ms) 0     Concurrency Wait Time (ms) 0     Invalidations 0     Version Count 1     Sharable Mem(KB) 28    

从SQL的性能指标上看,其单次执行需要6分钟左右,处理5万多条记录,逻辑度只有756,主要消耗时间在CPU上。而这里就存在疑点,逻辑读如此之低,而CPU时间花费又如此之高,那么这些CPU都消耗在哪里呢?当然这个问通过SQL的统计信息中是找不到答案的,我们下面关注SQL的执行计划:


Id Operation Name Rows Bytes TempSpc Cost (%CPU) Time 0 SELECT STATEMENT       1226 (100)   1    SORT ORDER BY   49379 3375K 3888K 1226 (2) 00:00:05 2      HASH JOIN ANTI   49379 3375K 2272K 401 (3) 00:00:02 3        TABLE ACCESS FULL T_NUM 49379 1687K   88 (4) 00:00:01 4        TABLE ACCESS FULL T_NUM 49379 1687K   88 (4) 00:00:01

从执行计划看,Oracle选择了HASH JOIN ANTI,JOIN的两张表都是T_NUM,且都采用了全表扫描,并未选择索引。仅靠执行计划也只等得到上面的结论,至于为什么不选择索引,以及为什么执行时间过长,还需要进一步的分析。

将原SQL进行简单脱密改写后, SQL文本类似如下:

SELECT BEGIN, END, ROWID, LENGTH(BEGIN)
FROM T_NUM A
WHERE NOT EXISTS (
SELECT 1
FROM T_NUM B
WHERE B.BEGIN <= A.BEGIN
AND B.END >= A.END
AND B.ROWID != A.ROWID
AND LENGTH(B.BEGIN) = LENGTH(A.BEGIN));

如果分析SQL语句,会发现这是一个自关联语句,在BEGIN字段长度相等的前提下,想要找到哪些不存在BEGIN比当前记录BEGIN小且END比当前记录END大的记录。

简单一点说,表中的记录表示的是由BEGIN开始到END截至的范围,那么当前想要获取的结果是找出哪些没有范围所包含的范围。需要注意的是,对于当前的SQL逻辑,如果存在两条范围完全相同的记录,那么最终这两条记录都会被舍弃。

业务的逻辑并不是特别复杂,但是要解决一条记录与其他记录进行比较,多半采用的方法是自关联,而在这个自关联中,既有大于等于又有小于等于,还有不等于,仅有的一个等于的关联条件,来自范围段BEGIN的长度的比较。

显而易见的是,如果是范围段本身的比较,其选择度一般还是不错的,但是如果只是比较其长度,那么无疑容易产生大量的重复,比如在这个例子中:

SQL> select length(begin), count(*) from t_num group by length(begin) order by 2 desc;

 

LENGTH(BEGIN) COUNT(*)

————- ———-

12  22096

11  9011

13  8999

14  8186

16   49

9   45

8   41

7   27

大量重复的数据出现在长度为11到14的范围上,在这种情况下,仅有的一个等值判断条件LENGTH(BEGIN)是非常低效的,这时一条记录根据这个等值条件会关联到近万条记录,设置关联到两万多条记录,显然大量的实践消耗在低效的连接过程中。

再来看一下具体的SQL语句,会发现几乎没有办法建立索引,因为LENGTH(BEGIN)的选择度非常查,而其他的条件都是不等查询,选择度也不会好,即使建立索引,强制执行选择索引,效率也不会好。

那么如果想要继续优化这个SQL,就只剩下一个办法,那就是SQL的改写。对于自关联查询而言,最佳的改写方法是利用分析函数,其强大的行级处理能力,可以在一次扫描过程中获得一条记录与其他记录的关系,从而消除了自关联的必要性。

SQL改写结果如下:

SELECT BEGIN, OLDEND END, LENGTH(BEGIN)
FROM (
SELECT BEGIN, OLDEND, END, LENGTH(BEGIN), COUNT(*) OVER(PARTITION BY LENGTH(BEGIN), BEGIN, OLDEND) CN,
ROW_NUMBER() OVER(PARTITION BY LENGTH(BEGIN), END ORDER BY BEGIN) RN
FROM
(
SELECT BEGIN, END OLDEND, MAX(END) OVER(PARTITION BY LENGTH(BEGIN) ORDER BY BEGIN, END DESC) END
FROM T_NUM
)
)
WHERE RN = 1
AND CN = 1;

简单的说,内层的分析函数MAX用来根据BEGIN从小到大,END从大到小的条件,确定每个范围对应的最大的END的值。而外层的两个分析函数,COUNT用来去掉完全重复的记录,而ROW_NUMBER用来获取范围最大的记录(也就是没有被其他记录的范围所涵盖)。

改写后,这个SQL避免对自关联,也就不存在关联条件重复值过高的性能隐患了。在模拟环境中,性能对比如下:

SQL> SELECT BEGIN, END, ROWID, LENGTH(BEGIN)

2 FROM T_NUM A

3 WHERE NOT EXISTS (

4  SELECT 1

5  FROM T_NUM B

6  WHERE B.BEGIN <= A.BEGIN

7  AND B.END >= A.END

8  AND B.ROWID != A.ROWID

9  AND LENGTH(B.BEGIN) = LENGTH(A.BEGIN))

10 ;

 

48344 rows selected.

 

Elapsed: 00:00:57.68

 

Execution Plan

———————————————————-

Plan hash value: 2540751655

 

————————————————————————————

| Id | Operation   | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time  |

————————————————————————————

| 0 | SELECT STATEMENT |  | 48454 | 1703K|  | 275 (1)| 00:00:04 |

|* 1 | HASH JOIN ANTI |  | 48454 | 1703K| 1424K| 275 (1)| 00:00:04 |

| 2 | TABLE ACCESS FULL| T_NUM | 48454 | 851K|  | 68 (0)| 00:00:01 |

| 3 | TABLE ACCESS FULL| T_NUM | 48454 | 851K|  | 68 (0)| 00:00:01 |

————————————————————————————

 

Predicate Information (identified by operation id):

—————————————————

 

1 – access(LENGTH(TO_CHAR(“B”.”BEGIN”))=LENGTH(TO_CHAR(“A”.”BEGIN”)))

filter(“B”.”BEGIN”<=”A”.”BEGIN” AND “B”.”END”>=”A”.”END” AND

“B”.ROWID<>”A”.ROWID)

 

 

Statistics

———————————————————-

0 recursive calls

0 db block gets

404 consistent gets

0 physical reads

0 redo size

2315794 bytes sent via SQL*Net to client

35966 bytes received via SQL*Net from client

3224 SQL*Net roundtrips to/from client

0 sorts (memory)

0 sorts (disk)

48344 rows processed

 

SQL> SELECT BEGIN, OLDEND END, LENGTH(BEGIN)

2 FROM (

3  SELECT BEGIN, OLDEND, END, LENGTH(BEGIN), COUNT(*) OVER(PARTITION BY LENGTH(BEGIN), BEGIN, OLDEND) CN,

4    ROW_NUMBER() OVER(PARTITION BY LENGTH(BEGIN), END ORDER BY BEGIN) RN

5  FROM

6  (

7    SELECT BEGIN, END OLDEND, MAX(END) OVER(PARTITION BY LENGTH(BEGIN) ORDER BY BEGIN, END DESC) END

8    FROM T_NUM

9  )

10 )

11 WHERE RN = 1

12 AND CN = 1;

 

48344 rows selected.

 

Elapsed: 00:00:00.72

 

Execution Plan

———————————————————-

Plan hash value: 1546715670

 

——————————————————————————————

| Id | Operation    | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time  |

——————————————————————————————

| 0 | SELECT STATEMENT   |  | 48454 | 2460K|  | 800 (1)| 00:00:10 |

|* 1 | VIEW     |  | 48454 | 2460K|  | 800 (1)| 00:00:10 |

|* 2 | WINDOW SORT PUSHED RANK|  | 48454 | 1845K| 2480K| 800 (1)| 00:00:10 |

| 3 | WINDOW BUFFER   |  | 48454 | 1845K|  | 800 (1)| 00:00:10 |

| 4 |  VIEW     |  | 48454 | 1845K|  | 311 (1)| 00:00:04 |

| 5 |  WINDOW SORT   |  | 48454 | 662K| 1152K| 311 (1)| 00:00:04 |

| 6 |  TABLE ACCESS FULL | T_NUM | 48454 | 662K|  | 68 (0)| 00:00:01 |

——————————————————————————————

 

Predicate Information (identified by operation id):

—————————————————

 

1 – filter(“RN”=1 AND “CN”=1)

2 – filter(ROW_NUMBER() OVER ( PARTITION BY LENGTH(TO_CHAR(“BEGIN”)),”END”

ORDER BY “BEGIN”)<=1)

 

 

Statistics

———————————————————-

0 recursive calls

0 db block gets

202 consistent gets

0 physical reads

0 redo size

1493879 bytes sent via SQL*Net to client

35966 bytes received via SQL*Net from client

3224 SQL*Net roundtrips to/from client

3 sorts (memory)

0 sorts (disk)

48344 rows processed

原SQL运行时间接近1分钟,而改写后的SQL语句只需要0.72秒,执行时间变为原本的1/80,逻辑读减少一半。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。