MySQL prepare原理详解

(编辑:jimmy 日期: 2025/1/19 浏览:2)

Prepare的好处 

    Prepare SQL产生的原因。首先从mysql服务器执行sql的过程开始讲起,SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化->执行。词法分析->语法分析这两个阶段我们称之为硬解析。词法分析识别sql中每个词,语法分析解析SQL语句是否符合sql语法,并得到一棵语法树(Lex)。对于只是参数不同,其他均相同的sql,它们执行时间不同但硬解析的时间是相同的。而同一SQL随着查询数据的变化,多次查询执行时间可能不同,但硬解析的时间是不变的。对于sql执行时间较短,sql硬解析的时间占总执行时间的比率越高。而对于淘宝应用的绝大多数事务型SQL,查询都会走索引,执行时间都比较短。因此淘宝应用db sql硬解析占的比重较大。 

    Prepare的出现就是为了优化硬解析的问题。Prepare在服务器端的执行过程如下

 1)  Prepare 接收客户端带”"htmlcode">

Connection con = null;
      PreparedStatement ps = null;
      String sql = "select * from user where id=";
      ps = con.prepareStatement(sql);      
      ps.setInt(1, 1);"htmlcode">
cnt = 5000;
    // no prepare
    String sql = "select biz_order_id,out_order_id,seller_nick,buyer_nick,seller_id,buyer_id,auction_id,auction_title,auction_price,buy_amount,biz_type,sub_biz_type,fail_reason,pay_status,logistics_status,out_trade_status,snap_path,gmt_create,status,ifnull(buyer_rate_status, 4) buyer_rate_status from tc_biz_order_0030 where " +
    "parent_id = 594314511722841 or parent_id =547667559932641;";
    begin = new Date();
    System.out.println("begin:" + df.format(begin));
    stmt = con.createStatement();
    for (int i = 0; i < cnt; i++)
    {      
      stmt.executeQuery(sql);
    } 
    end = new Date();
    System.out.println("end:" + df.format(end));
    long temp = end.getTime() - begin.getTime();
    System.out.println("no perpare interval:" + temp);
    
    // test prepare    
    sql = "select biz_order_id,out_order_id,seller_nick,buyer_nick,seller_id,buyer_id,auction_id,auction_title,auction_price,buy_amount,biz_type,sub_biz_type,fail_reason,pay_status,logistics_status,out_trade_status,snap_path,gmt_create,status,ifnull(buyer_rate_status, 4) buyer_rate_status from tc_biz_order_0030 where " +
        "parent_id = 594314511722841 or parent_id =";
    ps = con.prepareStatement(sql);
    BigInteger param = new BigInteger("547667559932641");
    begin = new Date();
    System.out.println("begin:" + df.format(begin));
    for (int i = 0; i < cnt; i++)
    {
      ps.setObject(1, param);
      ps.executeQuery(); 
    } 
    end = new Date();
    System.out.println("end:" + df.format(end));
    temp = end.getTime() - begin.getTime();
    System.out.println("prepare interval:" + temp);

经多次采样测试结果如下

非prepare和prepare时间比 useServerPrepStmts=true 0.93 useServerPrepStmts=false 1.01

结论:

useServerPrepStmts=true时,prepare提升7%;

useServerPrepStmts=false时,prepare与非prepare性能相当。

如果将语句简化为select * from tc_biz_order_0030 where parent_id ="htmlcode">

6.46%  mysqld mysqld       [.] _Z10MYSQLparsePv
   3.74%  mysqld libc-2.12.so    [.] __memcpy_ssse3
   2.50%  mysqld mysqld       [.] my_hash_sort_utf8
   2.15%  mysqld mysqld       [.] cmp_dtuple_rec_with_match
   2.05%  mysqld mysqld       [.] _ZL13lex_one_tokenPvS_
   1.46%  mysqld mysqld       [.] buf_page_get_gen
   1.34%  mysqld mysqld       [.] page_cur_search_with_match
   1.31%  mysqld mysqld       [.] _ZL14build_templateP19row_prebuilt_structP3THDP5TABLEj
   1.24%  mysqld mysqld       [.] rec_init_offsets
   1.11%  mysqld libjemalloc.so.1  [.] free
   1.09%  mysqld mysqld       [.] rec_get_offsets_func
   1.01%  mysqld libjemalloc.so.1  [.] malloc
   0.96%  mysqld libc-2.12.so    [.] __strlen_sse42
   0.93%  mysqld mysqld       [.] _ZN4JOIN8optimizeEv
   0.91%  mysqld mysqld       [.] _ZL15get_hash_symbolPKcjb
   0.88%  mysqld mysqld       [.] row_search_for_mysql
   0.86%  mysqld [kernel.kallsyms]  [k] tcp_recvmsg

以下为perpare 

3.46%  mysqld libc-2.12.so    [.] __memcpy_ssse3
   2.32%  mysqld mysqld       [.] cmp_dtuple_rec_with_match
   2.14%  mysqld mysqld       [.] _ZL14build_templateP19row_prebuilt_structP3THDP5TABLEj
   1.96%  mysqld mysqld       [.] buf_page_get_gen
   1.66%  mysqld mysqld       [.] page_cur_search_with_match
   1.54%  mysqld mysqld       [.] row_search_for_mysql
   1.44%  mysqld mysqld       [.] btr_cur_search_to_nth_level
   1.41%  mysqld libjemalloc.so.1  [.] free
   1.35%  mysqld mysqld       [.] rec_init_offsets
   1.32%  mysqld [kernel.kallsyms]  [k] kfree
   1.14%  mysqld libjemalloc.so.1  [.] malloc
   1.08%  mysqld [kernel.kallsyms]  [k] fget_light
   1.05%  mysqld mysqld       [.] rec_get_offsets_func
   0.99%  mysqld mysqld       [.] _ZN8Protocol24send_result_set_metadataEP4ListI4ItemEj
   0.90%  mysqld mysqld       [.] sync_array_print_long_waits
   0.87%  mysqld mysqld       [.] page_rec_get_n_recs_before
   0.81%  mysqld mysqld       [.] _ZN4JOIN8optimizeEv
   0.81%  mysqld libc-2.12.so    [.] __strlen_sse42
   0.78%  mysqld mysqld       [.] _ZL20make_join_statisticsP4JOINP10TABLE_LISTP4ItemP16st_dynamic_array
   0.72%  mysqld [kernel.kallsyms]  [k] tcp_recvmsg
   0.63%  mysqld libpthread-2.12.so [.] __pthread_getspecific_internal
   0.63%  mysqld [kernel.kallsyms]  [k] sk_run_filter
   0.60%  mysqld mysqld       [.] _Z19find_field_in_tableP3THDP5TABLEPKcjbPj
   0.60%  mysqld mysqld       [.] page_check_dir
   0.57%  mysqld mysqld       [.] _Z16dispatch_command19enum_server_commandP3THDP

 对比可以发现 MYSQLparse lex_one_token在prepare时已优化掉了。

思考

  1 开启cachePrepStmts的问题,前面谈到每个连接都有一个缓存,是以sql为唯一标识的LRU cache. 在分表较多,大连接的情况下,可能会个应用服务器带来内存问题。这里有个前提是ibatis是默认使用prepare的。 在mybatis中,标签statementType可以指定某个sql是否是使用prepare.

statementType Any one of STATEMENT, PREPARED or CALLABLE. This causes MyBatis to use Statement, PreparedStatement orCallableStatement respectively. Default: PREPARED.

这样可以精确控制只对频率较高的sql使用prepare,从而控制使用prepare sql的个数,减少内存消耗。遗憾的是目前集团貌似大多使用的是ibatis 2.0版本,不支持statementType
标签。

    2 服务器端prepare cache是一个HASH MAP. Key为stmt->id,同时也是每个连接都维护一个。因此也有可能出现内存问题,待实际测试。如有必要需改造成Key为sql的全局cache,这样不同连接的相同prepare sql可以共享。 

   3 oracle prepare与mysql prepare的区别:

     mysql与oracle有一个重大区别是mysql没有oracle那样的执行计划缓存。前面我们讲到SQL执行过程包括以下阶段 词法分析->语法分析->语义分析->执行计划优化->执行。oracle的prepare实际上包括以下阶段:词法分析->语法分析->语义分析->执行计划优化,也就是说oracle的prepare做了更多的事情,execute只需要执行即可。因此,oracle的prepare比mysql更高效。

总结

以上就是本文关于MySQL prepare原理详解的全部内容,感兴趣的朋友可以参阅本站其他相关专题,有什么问题或者需要的文章或者书籍和源码可以随时留言,小编将竭诚为您解答。感谢大家对本站的支持。

一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。