基于pandas数据样本行列选取的方法

(编辑:jimmy 日期: 2025/7/1 浏览:2)

注:以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ------------------选取数据样本的第一行--------------------
print(food_info.loc[0])
#------------------选取数据样本的3到6行----------------------
print(food_info.loc[3:6])
#------------------head选取数据样本的前几行------------------
print(food_info.head(2))
# ------------------选取数据样本的2,5,10行,两种方法-----------
# print(food_info.loc[[2,5,10]])     #方法一 
two_five_ten = [2,5,10]         #方法二
print(food_info.loc[two_five_ten])
# ------------------选取数据样本的NDB_No列--------------------
# ndb_col = food_info["NDB_No"]     #方法一 
col_name = "NDB_No"           #方法二
ndb_col = food_info[col_name]
print(ndb_col)
# ------------------选取数据样本的多列-------------------
# zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]
print(zinc_copper)
# ---------------------综合小例子----------------------------
col_names = food_info.columns.tolist()   #把所有的行转化成list
print(col_names)
gram_columns = []
for c in col_names:            #遍历col_names,找出所有以(g)结尾的位置
  if c.endswith("(g)"):
    gram_columns.append(c)
print(gram_columns)
gram_df = food_info[gram_columns]     #把所有以(g)结尾的列存放到gram_df
print(gram_df.head(3)) 

以上这篇基于pandas数据样本行列选取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?