python训练数据时打乱训练数据与标签的两种方法小结

(编辑:jimmy 日期: 2025/11/18 浏览:2)

如下所示:

<code class="language-python">import numpy as np 
 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])
 
print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
data_num, _= data.shape #得到样本数 
index = np.arange(data_num) # 生成下标 
np.random.shuffle(index) 
print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
print '数据:',data[index] 
print '标签:',y[index]

print '-------第2种方法:直接的打乱数据,利用随机数种子,好处:每次打乱的顺序是固定的----------' 
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) 
y = np.array([1,2,3,4,5])

print '-------原数据:----------' 
print '数据:',data 
print '标签:', y
print '-------打乱数据:----------' 
np.random.seed(116)
np.random.shuffle(data) 
np.random.seed(116)
np.random.shuffle(y) 
print '数据:',data 
print '标签:', y</code>

以上这篇python训练数据时打乱训练数据与标签的两种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?