在python中利用KNN实现对iris进行分类的方法

(编辑:jimmy 日期: 2024/11/16 浏览:2)

如下所示:

from sklearn.datasets import load_iris
 
iris = load_iris()
 
print iris.data.shape
 
from sklearn.cross_validation import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size = 0.25, random_state = 33)
 
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
 
ss = StandardScaler()
 
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
 
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
 
print 'The accuracy of K-Nearest Neighbor Classifier is: ', knc.score(X_test, y_test)
 
from sklearn.metrics import classification_report
 
print classification_report(y_test, y_predict, target_names = iris.target_names)

以上这篇在python中利用KNN实现对iris进行分类的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。