Python+OpenCV感兴趣区域ROI提取方法

(编辑:jimmy 日期: 2024/11/16 浏览:2)

方法一:使用轮廓

步骤1

"""src为原图"""
ROI = np.zeros(src.shape, np.uint8)   #感兴趣区域ROI
proimage = src.copy()     #复制原图
"""提取轮廓""" 
proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY)          #转换成灰度图
proimage=cv2.adaptiveThreshold(proimage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,7,7)            
proimage,contours,hierarchy=cv2.findContours(proimage,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE) #提取所有的轮廓  

步骤2

"""ROI提取"""
cv2.drawContours(ROI, contours, 1,(255,255,255),-1)    #ROI区域填充白色,轮廓ID1
ROI=cv2.cvtColor(ROI,cv2.COLOR_BGR2GRAY)          #转换成灰度图
ROI=cv2.adaptiveThreshold(ROI,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,7,7)                   #自适应阈值化
imgroi= cv2.bitwise_and(ROI,proimage)            #图像交运算 ,获取的是原图处理——提取轮廓后的ROI
2.#imgroi = cv2.bitwise_and(src,src,mask=ROI) 
3.#imgroi = ROI & src 无需灰度+阈值,获取的是原图中的ROI

方法二

img1 = cv2.imread('roi.jpg')
roi = img1[0:rows, 0:cols ]

以上这篇Python+OpenCV感兴趣区域ROI提取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。