python使用pipeline批量读写redis的方法

(编辑:jimmy 日期: 2026/1/8 浏览:2)

用了很久的redis了。随着业务的要求越来越高。对redis的读写速度要求也越来越高。正好最近有个需求(需要在秒级取值1000+的数据),如果对于传统的单词取值,循环取值,消耗实在是大,有小伙伴可能考虑到多线程,但这并不是最好的解决方案,这里考虑到了redis特有的功能pipeline管道功能。

下面就更大家演示一下pipeline在python环境下的使用情况。

1、插入数据

> import redis

> conn = redis.Redis(host='192.168.8.176',port=6379)

> pipe = conn.pipeline()

> pipe.hset("hash_key","leizhu900516",8)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>

> pipe.hset("hash_key","chenhuachao",9)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>

> pipe.hset("hash_key","wanger",10)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>

> pipe.execute()
[1L, 1L, 1L]
> 

2、批量读取数据

> pipe.hget("hash_key","leizhu900516")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>

> pipe.hget("hash_key","chenhuachao")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>

> pipe.hget("hash_key","wanger")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>

> result = pipe.execute()

> print result
['8', '9', '10']  #有序的列表
>

总结:redis的pipeline就是这么简单,实际生产环境,根据需要去编写相应的代码。思路同理,如:

redis_db = redis.Redis(host='127.0.0.1',port=6379)
data = ['zhangsan', 'lisi', 'wangwu']

with redis_db.pipeline(transaction=False) as pipe:
  for i in data:
    pipe.zscore(self.key, i)

  result = pipe.execute()

print result
# [100, 80, 78]

线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定

pipe =conn.pipeline(transaction=False)

经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。

以上这篇python使用pipeline批量读写redis的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。