(编辑:jimmy 日期: 2024/11/16 浏览:2)
本文实例讲述了Python multiprocessing多进程原理与应用。分享给大家供大家参考,具体如下:
multiprocessing包是Python中的多进程管理包,可以利用multiprocessing.Process
对象来创建进程,Process对象拥有is_alive()
、join([timeout])
、run()
、start()
、terminate()
等方法。
multprocessing模块的核心就是使管理进程像管理线程一样方便,每个进程有自己独立的GIL,所以不存在进程间争抢GIL的问题,在多核CPU环境中,可以大大提高运行效率。
multiprocessing使用示例:
import multiprocessing import time import cv2 def daemon1(image): name = multiprocessing.current_process().name for i in range(50): image = cv2.GaussianBlur(image, (3, 3), 1) time.sleep(0.1) print 'daemon1 done!' cv2.imshow('daemon1', image) def daemon2(image): name = multiprocessing.current_process().name for i in range(50): image = cv2.GaussianBlur(image, (3, 3), 1) time.sleep(0.5) print 'daemon2 done!' cv2.imshow('daemon2', image) if __name__ == '__main__': t1 = time.time() number_kernel = multiprocessing.cpu_count() print 'We have {0} kernels'.format(number_kernel) p1 = multiprocessing.Process(name='daemon1', target=daemon1,args= (cv2.imread('./p1.jpg'),)) p1.daemon = False p2 = multiprocessing.Process(name='daemon2', target=daemon2, args=(cv2.imread('./p2.jpg'),)) p2.daemon = False p1.start() p2.start() print 'p1 is {0}'.format(p1.is_alive()) p1.terminate() p1.join() print 'p1 is {0}'.format(p1.is_alive()) print 'p2 is {0}'.format(p2.is_alive()) p2.join() t2 = time.time() print '!!!!!!!!!!!!!!!!!!!!OK!!!!!!!!!!!!!!!!!!!!!' print 'total time is {0}'.format(t2-t1) print 'p1.exitcode = {0}'.format(p1.exitcode) print 'p2.exitcode = {0}'.format(p2.exitcode)
multiprocessing中Process是一个类,用于创建进程,以及定义进程的方法,Process类的构造函数是:
def __init__(self, group=None, target=None, name=None, args=(), kwargs={})
参数含义:
程序解读:
在multiprocessing中使用pool
如果需要多个子进程时,使用进程池(pool)来(自动)管理各个子进程更加方便:
from multiprocessing import Pool import os, time def long_time_task(name): print 'Run task {0} ({1})'.format(name,os.getpid()) start = time.time() time.sleep(3) end = time.time() print 'Task {0} runs {1:.2f} seconds.'.format(name,end - start) if __name__=='__main__': print 'Parent process ({0})'.format(os.getpid) p = Pool() for i in range(12): p.apply_async(long_time_task, args=(i,)) print 'Waiting for all subprocesses done...' p.close() p.join() print 'All subprocesses done.'
与Process类创建进程的方法不同,Pool是通过apply_async(func,args=(args))
方法创建进程,一个进程池中能同时运行的任务数是机器上CPU核的总数量n_kernel,如果创建的子进程数大于n_kernel,则同时执行n_kernel个进程,这n_kernel中某个进程完成之后才会启动下一个进程。
p.close()
关闭进程池之后才能调用join()方法多个子进程间的通信
多个子进程间的通信要用到multiprocessing.Queue
,Queue的特性是它是一个消息队列。比如有以下的需求,一个子进程向队列中写数据,另外一个进程从队列中取数据的例子:
from multiprocessing import Process, Queue import os, time, random def write(q): for value in ['A', 'B', 'C']: print 'Put {0} to queue...'.format(value) q.put(value) time.sleep(random.random()) def read(q): while True: if not q.empty(): value = q.get(True) print 'Get {0} from queue.'.format(value) time.sleep(random.random()) else: break if __name__=='__main__': q = multiprocessing.Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) pw.start() pw.join() pr.start() pr.join()
Queue使用方法:
Queue.get(False)
,取不到值时触发异常:Empty;Queue.get(False)
,当队列满了时报错:Full;在进程池Pool中,使用Queue会出错,需要使用Manager.Queue
:
from multiprocessing import Process, Queue import os, time, random def write(q): for value in ['A', 'B', 'C']: print 'Put {0} to queue...'.format(value) q.put(value) time.sleep(random.random()) def read(q): while True: if not q.empty(): value = q.get(True) print 'Get {0} from queue.'.format(value) time.sleep(random.random()) else: break if __name__=='__main__': manager = multiprocessing.Manager() q = manager.Queue() p = Pool() pw = p.apply_async(write, args=(q,)) time.sleep(2) pr = p.apply_async(read, args=(q,)) p.close() p.join() if not q.empty(): print 'q is not empty...' else: print 'q is empty...' print 'OK' if not q.empty(): print 'q is not empty...' else: print 'q is empty...' print 'done...'
父进程与子进程共享内存
定义普通的变量,不能实现在父进程和子进程之间共享:
import multiprocessing from multiprocessing import Pool def changevalue(n, a): n = 3.14 a[0] = 5 if __name__ == '__main__': num = 0 arr = range(10) p = Pool() p1 = p.apply_async(changevalue, args=(num, arr)) p.close() p.join() print num print arr[:]
结果输出num的值还是在父进程中定义的0,arr的第一个元素值还是0。
使用multiprocessing创建共享对象:
import multiprocessing def changevalue(n, a): n.value = 3.14 a[0] = 5 if __name__ == '__main__': num = multiprocessing.Value('d', 0.0) arr = multiprocessing.Array('i', range(10)) p = multiprocessing.Process(target=changevalue, args=(num, arr)) p.start() p.join() print num.value print arr[:]
结果输出num的值是在子进程中修改的3.14,arr的第一个元素值更改为5。
共享内存在Pool中的使用:
import multiprocessing from multiprocessing import Pool def changevalue(n, a): n.value = 3.14 a[0] = 5 if __name__ == '__main__': num = multiprocessing.Value('d', 0.0) arr = multiprocessing.Array('i', range(10)) p = Pool() p1 = p.apply_async(changevalue, args=(num, arr)) p.close() p.join() print num.value print arr[:]
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。