python障碍式期权定价公式

(编辑:jimmy 日期: 2026/1/1 浏览:2)

早期写的python障碍式期权的定价脚本,供大家参考,具体内容如下

#coding:utf-8
'''
障碍期权
q=x/s
H = h/x H 障碍价格
[1] Down-and-in call cdi
[2] Up-and-in call cui
[3] Down-and-in put pdi
[4] Up-and-in put pui
[5] Down-and-out call cdo
[6] Up-and-out call cuo
[7] Down-and-out put pdo
[8] Up-and-out put puo

'''
from math import log,sqrt,exp,ceil
from scipy import stats
import datetime
import tushare as ts
import pandas as pd
import numpy as np
import random
import time as timess
import os

def get_codes(path='D:\\code\\20180313.xlsx'):     #从代码表格从获取代码
 codes = pd.read_excel(path)
 codes = codes.iloc[:,1]    
 return codes

def get_datas(code,N=1,path='D:\\data\\'):        #获取数据N=1当天数据
 datas = pd.read_csv(path+eval(code)+'.csv',encoding='gbk',skiprows=2,header=None,skipfooter=N,engine='python').dropna() #读取CSV文件 名称为股票代码 解gbk skiprows跳过前两行文字 第一行不做为表头
 date_c = datas.iloc[:,[0,4,5]]     #只用第0 列代码数据和第4列收盘价数据
 date_c.index = datas[0]
 return date_c

def get_sigma(close,std_th):
 x_i = np.log(close/close.shift(1)).dropna()
 sigma = x_i.rolling(window=std_th).std().dropna()*sqrt(244)
 return sigma

def get_mu(sigma,r):
 mu = (r-pow(sigma,2)/2)/pow(sigma,2)
 return mu

def get_lambda(mu,r,sigma):
 lam = sqrt(mu*mu+2*r/pow(sigma,2))
 return lam

def x_y(sigma,T,mu,H,lam,q=1):
 x1 = log(1/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 x2 = log(1/(q*H))/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 y1 = log(H*H/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 y2 = log(q*H)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
 z = log(q*H)/(sigma*sqrt(T))+lam*sigma*sqrt(T)
 return x1,x2,y1,y2,z

def get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z,q=1):
 f1 = phi*1*stats.norm.cdf(phi*x1,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x1-phi*sigma*sqrt(T),0.0,1.0)
 f2 = phi*1*stats.norm.cdf(phi*x2,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x2-phi*sigma*sqrt(T),0.0,1.0)
 f3 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y1,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y1-eta*sigma*sqrt(T),0.0,1.0)
 f4 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y2,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0)
 f5 = (H-1)*exp(-r*T)*(stats.norm.cdf(eta*x2-eta*sigma*sqrt(T),0.0,1.0)-pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0))
 f6 = (H-1)*(pow(H*q,(mu+lam))*stats.norm.cdf(eta*z,0.0,1.0)+pow(H*q,(mu-lam))*stats.norm.cdf(eta*z-2*eta*lam*sigma*sqrt(T),0.0,1.0))
 return f1,f2,f3,f4,f5,f6

def main(param,t,r=0.065):
 typeflag = ['cdi','cdo','cui','cuo','pdi','pdo','pui','puo']
 r = log(1+r)
 T = t/365
 codes = get_codes()
 H = 1.2
 for i in range(len(codes)):
 sdbs = []
 for j in typeflag:
 code = codes.iloc[i]
 datas = get_datas(code)
 close = datas[4]
 sigma = get_sigma(close,40)[-1]
 mu = get_mu(sigma,r)
 lam = get_lambda(mu,r,sigma)
 x1,x2,y1,y2,z = x_y(sigma,T,mu,H,lam)
 eta = param[j]['eta']
 phi = param[j]['phi']
 f1,f2,f3,f4,f5,f6 = get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z)
 if j=='cdi':
 sdb = f1-f2+f4+f5
 if j=='cui':
 sdb = f2-f3+f4+f5
 if j=='pdi':
 sdb = f1+f5
 if j=='pui':
 sdb = f3+f5
 if j=='cdo':
 sdb = f2+f6-f4
 if j=='cuo':
 sdb = f1-f2+f3-f4+f6
 if j=='pdo':
 sdb = f6
 if j=='puo':
 sdb = f1-f3+f6
 sdbs.append(sdb)
 print(T,r,sigma,H,sdbs)
if __name__ == '__main__':
 param = {'cdi':{'eta':1,'phi':1},'cdo':{'eta':1,'phi':1},'cui':{'eta':-1,'phi':1},'cuo':{'eta':-1,'phi':1},
 'pdi':{'eta':1,'phi':-1},'pdo':{'eta':1,'phi':-1},'pui':{'eta':-1,'phi':-1},'puo':{'eta':-1,'phi':-1}}
 t = 30
 main(param,t)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。