Python完成哈夫曼树编码过程及原理详解

(编辑:jimmy 日期: 2024/11/14 浏览:2)

哈夫曼树原理

秉着能不写就不写的理念,关于哈夫曼树的原理及其构建,还是贴一篇博客吧。

https://www.jb51.net/article/97396.htm

其大概流程

Python完成哈夫曼树编码过程及原理详解

哈夫曼编码代码

# 树节点类构建
class TreeNode(object):
  def __init__(self, data):
    self.val = data[0]
    self.priority = data[1]
    self.leftChild = None
    self.rightChild = None
    self.code = ""
# 创建树节点队列函数
def creatnodeQ(codes):
  q = []
  for code in codes:
    q.append(TreeNode(code))
  return q
# 为队列添加节点元素,并保证优先度从大到小排列
def addQ(queue, nodeNew):
  if len(queue) == 0:
    return [nodeNew]
  for i in range(len(queue)):
    if queue[i].priority >= nodeNew.priority:
      return queue[:i] + [nodeNew] + queue[i:]
  return queue + [nodeNew]
# 节点队列类定义
class nodeQeuen(object):

  def __init__(self, code):
    self.que = creatnodeQ(code)
    self.size = len(self.que)

  def addNode(self,node):
    self.que = addQ(self.que, node)
    self.size += 1

  def popNode(self):
    self.size -= 1
    return self.que.pop(0)
# 各个字符在字符串中出现的次数,即计算优先度
def freChar(string):
  d ={}
  for c in string:
    if not c in d:
      d[c] = 1
    else:
      d[c] += 1
  return sorted(d.items(),key=lambda x:x[1])
# 创建哈夫曼树
def creatHuffmanTree(nodeQ):
  while nodeQ.size != 1:
    node1 = nodeQ.popNode()
    node2 = nodeQ.popNode()
    r = TreeNode([None, node1.priority+node2.priority])
    r.leftChild = node1
    r.rightChild = node2
    nodeQ.addNode(r)
  return nodeQ.popNode()

codeDic1 = {}
codeDic2 = {}
# 由哈夫曼树得到哈夫曼编码表
def HuffmanCodeDic(head, x):
  global codeDic, codeList
  if head:
    HuffmanCodeDic(head.leftChild, x+'0')
    head.code += x
    if head.val:
      codeDic2[head.code] = head.val
      codeDic1[head.val] = head.code
    HuffmanCodeDic(head.rightChild, x+'1')
# 字符串编码
def TransEncode(string):
  global codeDic1
  transcode = ""
  for c in string:
    transcode += codeDic1[c]
  return transcode
# 字符串解码
def TransDecode(StringCode):
  global codeDic2
  code = ""
  ans = ""
  for ch in StringCode:
    code += ch
    if code in codeDic2:
      ans += codeDic2[code]
      code = ""
  return ans
# 举例
string = "AAGGDCCCDDDGFBBBFFGGDDDDGGGEFFDDCCCCDDFGAAA"
t = nodeQeuen(freChar(string))
tree = creatHuffmanTree(t)
HuffmanCodeDic(tree, '')
print(codeDic1,codeDic2)
a = TransEncode(string)
print(a)
aa = TransDecode(a)
print(aa)
print(string == aa)

接下来就是一段一段分析代码

1.树结点类的构建:

共有5个属性:结点的值,结点的优先度,结点的左子结点,结点的右子结点,结点值的编码(这个没有什么好说的,这些属性都是被需要的)

2.创建树结点队列函数:

对于所有的字母结点,我们将其组成一个队列,这里使用list列表来完成队列的功能。将所有树节点够放进列表中,当然传进来的是按优先度从小到大已排序的元素列表

3.为队列添加节点元素,并保证优先度从大到小排列:

当有新生成的结点时,需将其插入列表,并放在合适位置,使队列依然时按优先度从小打到排列的。

4.结点队列类定义:

创建类初始化时需要传进去的是一个列表,列表中的每个元素是由字母与优先度组成的元组。元组第一个元素是字母,第二个元素是优先度(即在文本中出现的次数)

类初始化化时,调用“创建树结点队列函数”,队列中的每个元素都是一个树结点。

类中还包含一个队列规模属性以及另外两个操作函数:添加结点函数和弹出结点函数。

添加结点函数直接调用之前定义的函数即可,输入的参数为队列和新结点,并且队列规模加一

弹出第一个元素则直接调用列表的pop(0)函数,同时队列规模减一

5.计算文本中个字母的优先度,即出现的次数:

定义一个字典,遍历文本中的每一个字母,若字母不在字典里说明是第一次出现,则定义该字母为键,另键值为1,若在字典里有,则只需将相应的键值加一。 遍历后就得到了每个字母出现的次数。

6.由哈夫曼树得到编码表:

这里定义了两个全局字典,用于存放字母编码,一个字典用于编码,另一个字典用于解码,这样程序操作起来比较方便。

这里主要就是遍历,运用的是二叉树的中序遍历。如果明白中序遍历的化,就能看懂这里的代码,每递归到深一层的时候,就在后面多加一个‘0'(左子树)或‘1'(右子树)。

中序遍历我在上一篇博客中讲的还算可以吧,不懂的可以参考一下,否则就可以略过这一段。

这一段是哈夫曼编码的关键,也是难点,希望能够好好理解一下,也是对递归的一个理解。这一点没问题的话,我觉得哈夫曼树真的挺简单的!!!

7.字符串编码,字符串解码:

这两段我就不详细说了,应为已经有编码与解码的字典了,所以对应每一个字母直接在字典里找就好了,而且字典的寻找速度还是相当快的。

差不多了,例子就不举了,确实哈夫曼树比之前的什么八皇后问题还有KMP问题简单多了。

最后向Huffman大神致敬,祝各位学有所成。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。