详解python pandas 分组统计的方法

(编辑:jimmy 日期: 2026/1/1 浏览:2)

首先,看看本文所面向的应用场景:我们有一个数据集df,现在想统计数据中某一列每个元素的出现次数。这个在我们前面文章《如何画直方图》中已经介绍了方法,利用value_counts()就可以实现(具体回看文章)

但是,现在,我们考虑另外一个场景,我们假如要想统计其中两列元素出现次数呢?举个栗子:

详解python pandas 分组统计的方法

在df数据集中,如果我们想统计A、B两列的元素的出现情况,也就是说,得到如下表。

详解python pandas 分组统计的方法

从上面的最后一列可以看到,在A、B两列中,1 2 出现了2次,1 4 出现1次 ,1 6出现1次,2 3出现了2次, 2 4 出现1次, 3 1出现了1次

具体实现的代码:

import pandas as pd
df=pd.DataFrame([[1,2,2],[1,4,5],[1,2,4],[1,6,3],[2,3,1],[2,4,1],[2,3,5],[3,1,1]],columns=['A','B','C'])
gp=df.groupby(by=['A','B'])
gp.size()

所以,如果想统计更多列,只要在groupby()中的by参数添加就可以,例如统计3列。

gp=df.groupby(by=['A','B','C'])

由gp.size()得到的是可以mulitiindex Series。

下面,要转化成DataFrame的结构。

newdf=gp.size()
newdf.reset_index(name='times')

详解python pandas 分组统计的方法

其中name中参数就是我们可以为最后一列添加新的名字,例如这里的“times”

这个时候newdf已经是DataFrame的类型了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。