pandas DataFrame行或列的删除方法的实现示例

(编辑:jimmy 日期: 2024/11/14 浏览:2)

此文我们继续围绕DataFrame介绍相关操作。

平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作。

1. 删除DataFrame某一列

这里我们继续用上一节产生的DataFrame来做例子,原DataFrame如下:

pandas DataFrame行或列的删除方法的实现示例

我们使用drop()函数,此函数有一个列表形参labels,写的时候可以加上labels=[xxx],也可以不加,列表内罗列要删除行或者列的名称,默认是行名称,如果要删除列,则要增加参数axis=1,操作如下:

#pd.__version__ =='0.18.0'
#drop columns
test_dict_df.drop(['id'],axis=1)
#test_dict_df.drop(columns=['id']) # official operation, maybe my pandas version needs update!

结果如下,对于上面的代码,官方教程文档中给出了columns=['name'],但是在我测试的时候会报错,我用的python3,pandas版本为0.18,可能是pandas版本太老的缘故。

pandas DataFrame行或列的删除方法的实现示例

这里注意输出的结果是执行此方法的结果,而不是输出test_dict_df的结果,是因为方法默认的并不是在本身执行操作,这时候输出test_dict_df输出的仍然是没有进行删除操作的原DataFrame,如果你想在原DataFrame上进行操作,需要加上inplace=True,等价于在操作完再赋值给本身:

test_dict_df.drop(['id'],axis=1,inplace=True)
# test_dict_df = test_dict_df.drop(['id'],axis=1)

2. 删除DataFrame某一行

删除某一行,在上面删除列操作的时候也稍有提及,如果不加axis=1,则默认按照行号进行删除,例如要删除第0行和第4行:

test_dict_df.drop([0,4])

pandas DataFrame行或列的删除方法的实现示例

同理,你要在源DataFrame上进行操作就得加上inplace参数,否则不会在test_dict_df上改动。

当然,如果你的DataFrame有很多级,你可以加上level参数,这里就不多赘述了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。