pytorch神经网络之卷积层与全连接层参数的设置方法

(编辑:jimmy 日期: 2025/2/25 浏览:2)

当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错。

后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个。

全连接层的input_features是多少。首先来看一下这个简单的网络。这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢?

请看下文详解。

class AlexNet(nn.Module):
  def __init__(self):
    super(AlexNet, self).__init__()

    self.conv = nn.Sequential(
      nn.Conv2d(3, 96, kernel_size=11, stride=4),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(96, 256, kernel_size=5, padding=2),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(256, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 256, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2)
    )

    self.fc = nn.Sequential(
      nn.Linear(???, 4096)
      ......
      ......
    )

首先,我们先把forward写一下:

  def forward(self, x):
    x = self.conv(x)
    print x.size()

就写到这里就可以了。其次,我们初始化一下网络,随机一个输入:

import torch
from Alexnet.AlexNet import *
from torch.autograd import Variable

if __name__ == '__main__':
  net = AlexNet()

  data_input = Variable(torch.randn([1, 3, 96, 96])) # 这里假设输入图片是96x96
  print data_input.size()
  net(data_input)

结果如下:

(1L, 3L, 96L, 96L)
(1L, 256L, 1L, 1L)

显而易见,咱们这个全连接层的input_features为256。

以上这篇pytorch神经网络之卷积层与全连接层参数的设置方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?