详解PyTorch中Tensor的高阶操作

(编辑:jimmy 日期: 2024/11/14 浏览:2)

条件选取:torch.where(condition, x, y) → Tensor

返回从 x 或 y 中选择元素的张量,取决于 condition

操作定义:

详解PyTorch中Tensor的高阶操作

举个例子:

> import torch
> c = randn(2, 3)
> c
tensor([[ 0.0309, -1.5993, 0.1986],
    [-0.0699, -2.7813, -1.1828]])
> a = torch.ones(2, 3)
> a
tensor([[1., 1., 1.],
    [1., 1., 1.]])
> b = torch.zeros(2, 3)
> b
tensor([[0., 0., 0.],
    [0., 0., 0.]])
> torch.where(c > 0, a, b)
tensor([[1., 0., 1.],
    [0., 0., 0.]])

把张量中的每个数据都代入条件中,如果其大于 0 就得出 a,其它情况就得出 b,同样是把 a 和 b 的相同位置的数据导出。

查表搜集:torch.gather(input, dim, index, out=None) → Tensor

沿给定轴 dim,将输入索引张量 index 指定位置的值进行聚合

对一个3维张量,输出可以定义为:

  • out[i][j][k] = tensor[index[i][j][k]][j][k] # dim=0
  • out[i][j][k] = tensor[i][index[i][j][k]][k] # dim=1
  • out[i][j][k] = tensor[i][j][index[i][j][k]] # dim=3

举个例子:

> a = torch.randn(4, 10)
> b = a.topk(3, dim = 1)
> b
(tensor([[ 1.0134, 0.8785, -0.0373],
    [ 1.4378, 1.4022, 1.0115],
    [ 0.8985, 0.6795, 0.6439],
    [ 1.2758, 1.0294, 1.0075]]), tensor([[5, 7, 6],
    [2, 5, 8],
    [5, 9, 2],
    [7, 9, 6]]))
> index = b[1]
> index
tensor([[5, 7, 6],
    [2, 5, 8],
    [5, 9, 2],
    [7, 9, 6]])
> label = torch.arange(10) + 100
> label
tensor([100, 101, 102, 103, 104, 105, 106, 107, 108, 109])
> torch.gather(label.expand(4, 10), dim=1, index=index.long()) # 进行聚合操作
tensor([[105, 107, 106],
    [102, 105, 108],
    [105, 109, 102],
    [107, 109, 106]])
 

把 label 扩展为二维数据后,以 index 中的每个数据为索引,取出在 label 中索引位置的数据,再以 index 的的位置摆放。

比如,最后得出的结果中,第一行的 105 就是 label.expand(4, 10) 中第一行中索引为 5 的数据,提取出来后放在 5 所在的位置。

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。