pytorch 预训练层的使用方法

(编辑:jimmy 日期: 2025/11/4 浏览:2)

pytorch 预训练层的使用方法

将其他地方训练好的网络,用到新的网络里面

加载预训练网络

1.原先已经训练好一个网络 AutoEncoder_FC()

2.首先加载该网络,读取其存储的参数

3.设置一个参数集

cnnpre = AutoEncoder_FC()
cnnpre.load_state_dict(torch.load('autoencoder_FC.pkl')['state_dict'])
cnnpre_dict =cnnpre.state_dict()

加载新网络

1.设置新的网络

2.设置新网络参数集

cnn= AutoEncoder()
cnn_dict = cnn.state_dict()

更新新网络参数

1.将两个参数集比对,存在的网络参数保留

2.使用保留下的参数更新新网络参数集

3.加载新网络参数集到新网络中

cnnpre_dict = {k: v for k, v in cnnpre_dict.items() if k in cnn_dict}
cnn_dict.update(cnnpre_dict)
cnn.load_state_dict(cnn_dict)

以上这篇pytorch 预训练层的使用方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?