numpy按列连接两个维数不同的数组方式

(编辑:jimmy 日期: 2025/9/23 浏览:2)

合并两个维数不同的ndarray

假设我们有一个3×2 numpy数组:

x = array(([[1,2], [3, 4], [5,6]]))

现在需要把它与一个一维数组:

y = array(([7, 8,9]))

通过将其添加到行的末尾,连接为一个3×3 numpy数组,如下所示:

array([[1,2,7],
    [3,4,8],
    [5,6,9]])

在numpy中按列连接的方法是:

hstack((x,y))

但是这不行,会报错:

ValueError: arrays must have same number of dimensions

解决方法有两种:

方法一:

> x = np.array([[1,2],[3,4],[5,6]])
> y = np.array([7,8,9])
> np.hstack((x, np.array(([y])).T ))
array([[1, 2, 7],
    [3, 4, 8],
    [5, 6, 9]])

方法二:

> x = np.array([[1,2],[3,4],[5,6]])
> y = np.array([7,8,9])
> np.column_stack((x,y))
array([[1, 2, 7],
    [3, 4, 8],
    [5, 6, 9]])

以上这篇numpy按列连接两个维数不同的数组方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?