python 多维高斯分布数据生成方式

(编辑:jimmy 日期: 2025/9/30 浏览:2)

我就废话不多说了,直接上代码吧!

import numpy as np
import matplotlib.pyplot as plt


def gen_clusters():
  mean1 = [0,0]
  cov1 = [[1,0],[0,10]]
  data = np.random.multivariate_normal(mean1,cov1,100)
  
  mean2 = [10,10]
  cov2 = [[10,0],[0,1]]
  data = np.append(data,
           np.random.multivariate_normal(mean2,cov2,100),
           0)
  
  mean3 = [10,0]
  cov3 = [[3,0],[0,4]]
  data = np.append(data,
           np.random.multivariate_normal(mean3,cov3,100),
           0)
  
  return np.round(data,4)

def save_data(data,filename):
  with open(filename,'w') as file:
    for i in range(data.shape[0]):
      file.write(str(data[i,0])+','+str(data[i,1])+'\n')
      
def load_data(filename):
  data = []
  with open(filename,'r') as file:
    for line in file.readlines():
      data.append([ float(i) for i in line.split(',')])
  return np.array(data)

def show_scatter(data):
  x,y = data.T
  plt.scatter(x,y)
  plt.axis()
  plt.title("scatter")
  plt.xlabel("x")
  plt.ylabel("y")
  
data = gen_clusters()
save_data(data,'3clusters.txt')
d = load_data('3clusters.txt')
show_scatter(d)

python 多维高斯分布数据生成方式

以上这篇python 多维高斯分布数据生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?