pytorch之ImageFolder使用详解

(编辑:jimmy 日期: 2024/11/12 浏览:2)

pytorch之ImageFolder

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。

ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

root:在root指定的路径下寻找图片

transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象

target_transform:对label的转换

loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

图片结构如下所示:

pytorch之ImageFolder使用详解

from torchvision import transforms as T
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder


dataset = ImageFolder('data/dogcat_2/')

# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)

# 所有图片的路径和对应的label
print(dataset.imgs)

# 没有任何的transform,所以返回的还是PIL Image对象
#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label
#print(dataset[0][0]) # 为0返回图片数据
plt.imshow(dataset[0][0])
plt.axis('off')
plt.show()

加上transform

normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
     T.RandomResizedCrop(224),
     T.RandomHorizontalFlip(),
     T.ToTensor(),
     normalize,
])
dataset = ImageFolder('data1/dogcat_2/', transform=transform)

# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
#print(dataset[0][0].size())

to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
a=to_img(dataset[0][0]*0.2+0.4)
plt.imshow(a)
plt.axis('off')
plt.show()

以上这篇pytorch之ImageFolder使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?