基于Pytorch SSD模型分析

(编辑:jimmy 日期: 2024/9/24 浏览:2)

本文参考github上SSD实现,对模型进行分析,主要分析模型组成及输入输出大小.SSD网络结构如下图:

基于Pytorch SSD模型分析

每输入的图像有8732个框输出;

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
#from layers import *
from data import voc, coco
import os
base = {
 '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
   512, 512, 512],
 '512': [],
}
extras = {
 '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
 '512': [],
}
mbox = {
 '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location
 '512': [],
}

VGG基础网络结构:

def vgg(cfg, i, batch_norm=False):
 layers = []
 in_channels = i
 for v in cfg:
  if v == 'M':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
  elif v == 'C':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
  else:
   conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
   if batch_norm:
    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
   else:
    layers += [conv2d, nn.ReLU(inplace=True)]
   in_channels = v
 pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
 conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
 conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
 layers += [pool5, conv6,
    nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
 return layers
size=300
vgg=vgg(base[str(size)], 3)
print(vgg)

输出为:

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6))
ReLU(inplace)
Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
ReLU(inplace)

SSD中添加的网络

add_extras函数构建基本的卷积层

def add_extras(cfg, i, batch_norm=False):
 # Extra layers added to VGG for feature scaling
 layers = []
 in_channels = i
 flag = False
 for k, v in enumerate(cfg):
  if in_channels != 'S':
   if v == 'S':
    layers += [nn.Conv2d(in_channels, cfg[k + 1],
       kernel_size=(1, 3)[flag], stride=2, padding=1)]
   else:
    layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
   flag = not flag
  in_channels = v
 return layers
extra_layers=add_extras(extras[str(size)], 1024)
for layer in extra_layers:
 print(layer)

输出为:

Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))

multibox函数得到每个特征图的默认box的位置计算网络和分类得分网络

def multibox(vgg, extra_layers, cfg, num_classes):
 loc_layers = []
 conf_layers = []
 vgg_source = [21, -2]
 for k, v in enumerate(vgg_source):
  loc_layers += [nn.Conv2d(vgg[v].out_channels,
         cfg[k] * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(vgg[v].out_channels,
      cfg[k] * num_classes, kernel_size=3, padding=1)]
 for k, v in enumerate(extra_layers[1::2], 2):
  loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * num_classes, kernel_size=3, padding=1)]
 return vgg, extra_layers, (loc_layers, conf_layers)
base_, extras_, head_ = multibox(vgg(base[str(size)], 3), ## 产生vgg19基本模型
          add_extras(extras[str(size)], 1024), 
          mbox[str(size)], num_classes)
#mbox[str(size)]为:[4, 6, 6, 6, 4, 4]

得到的输出为:

base_为上述描述的vgg网络,extras_为extra_layers网络,head_为:

([Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))],
 [Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))])

SSD网络及forward函数为:

class SSD(nn.Module):
 """Single Shot Multibox Architecture
 The network is composed of a base VGG network followed by the
 added multibox conv layers. Each multibox layer branches into
  1) conv2d for class conf scores
  2) conv2d for localization predictions
  3) associated priorbox layer to produce default bounding
   boxes specific to the layer's feature map size.
 See: https://arxiv.org/pdf/1512.02325.pdf for more details.

 Args:
  phase: (string) Can be "test" or "train"
  size: input image size
  base: VGG16 layers for input, size of either 300 or 500
  extras: extra layers that feed to multibox loc and conf layers
  head: "multibox head" consists of loc and conf conv layers
 """

 def __init__(self, phase, size, base, extras, head, num_classes):
  super(SSD, self).__init__()
  self.phase = phase
  self.num_classes = num_classes 
  self.cfg = (coco, voc)[num_classes == 21]
  self.priorbox = PriorBox(self.cfg)
  self.priors = Variable(self.priorbox.forward(), volatile=True)
  self.size = size

  # SSD network
  self.vgg = nn.ModuleList(base)
  # Layer learns to scale the l2 normalized features from conv4_3
  self.L2Norm = L2Norm(512, 20)
  self.extras = nn.ModuleList(extras)

  self.loc = nn.ModuleList(head[0])
  self.conf = nn.ModuleList(head[1])

  if phase == 'test':
   self.softmax = nn.Softmax(dim=-1)
   self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)

 def forward(self, x):
  """Applies network layers and ops on input image(s) x.

  Args:
   x: input image or batch of images. Shape: [batch,3,300,300].

  Return:
   Depending on phase:
   test:
    Variable(tensor) of output class label predictions,
    confidence score, and corresponding location predictions for
    each object detected. Shape: [batch,topk,7]

   train:
    list of concat outputs from:
     1: confidence layers, Shape: [batch*num_priors,num_classes]
     2: localization layers, Shape: [batch,num_priors*4]
     3: priorbox layers, Shape: [2,num_priors*4]
  """
  sources = list()
  loc = list()
  conf = list()

  # apply vgg up to conv4_3 relu
  for k in range(23):
   x = self.vgg[k](x) ##得到的x尺度为[1,512,38,38]

  s = self.L2Norm(x)
  sources.append(s)

  # apply vgg up to fc7
  for k in range(23, len(self.vgg)):
   x = self.vgg[k](x) ##得到的x尺寸为[1,1024,19,19]
  sources.append(x)

  # apply extra layers and cache source layer outputs
  for k, v in enumerate(self.extras):
   x = F.relu(v(x), inplace=True)
   if k % 2 == 1:
    sources.append(x)
  '''
  上述得到的x输出分别为:
  torch.Size([1, 512, 10, 10])
  torch.Size([1, 256, 5, 5])
  torch.Size([1, 256, 3, 3])
  torch.Size([1, 256, 1, 1])
  '''

  # apply multibox head to source layers
  for (x, l, c) in zip(sources, self.loc, self.conf):
   loc.append(l(x).permute(0, 2, 3, 1).contiguous())
   conf.append(c(x).permute(0, 2, 3, 1).contiguous())

  loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
  conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
  if self.phase == "test":
   output = self.detect(
    loc.view(loc.size(0), -1, 4),     # loc preds
    self.softmax(conf.view(conf.size(0), -1,
        self.num_classes)),    # conf preds
    self.priors.type(type(x.data))     # default boxes
   )
  else:
   output = (
    loc.view(loc.size(0), -1, 4), #[1,8732,4]
    conf.view(conf.size(0), -1, self.num_classes),#[1,8732,21]
    self.priors
   )
  return output

上述代码中sources中保存的数据输出如下,即用于边框提取的特征图:

torch.Size([1, 512, 38, 38])
torch.Size([1, 1024, 19, 19])
torch.Size([1, 512, 10, 10])
torch.Size([1, 256, 5, 5])
torch.Size([1, 256, 3, 3])
torch.Size([1, 256, 1, 1])

模型输入为

x=Variable(torch.randn(1,3,300,300))

以上这篇基于Pytorch SSD模型分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?