计算Python Numpy向量之间的欧氏距离实例

(编辑:jimmy 日期: 2024/11/14 浏览:2)

计算Python Numpy向量之间的欧氏距离,已知vec1和vec2是两个Numpy向量,欧氏距离计算如下:

import numpy
dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))

或者直接:

dist = numpy.linalg.norm(vec1 - vec2)

补充知识:Python中计算两个数据点之间的欧式距离,一个点到数据集中其他点的距离之和

如下所示:

计算数两个数据点之间的欧式距离

import numpy as np
def ed(m, n):
 return np.sqrt(np.sum((m - n) ** 2))
i = np.array([1, 1])
j = np.array([3, 3])
distance = ed(i, j)
print(distance)

在jupyter 中运输代码输出结果如下:

计算Python Numpy向量之间的欧氏距离实例

计算一个点到数据集中其他点的距离之和

from scipy import *
import pylab as pl
 
all_points = rand(500, 2)
pl.plot(all_points[:, 0], all_points[:, 1], 'b.')
pl.show()

在jupyter 中运输代码输出结果如下:

计算Python Numpy向量之间的欧氏距离实例

from scipy import *
import pylab as pl
 
all_points = rand(500, 2)
pl.plot(all_points[:, 0], all_points[:, 1], 'b.')
pl.show()

定义函数计算距离

def cost(c, all_points): #指定点,all_points:为集合类的所有点
return sum(sum((c - all_points) ** 2, axis=1) ** 0.5)

以上这篇计算Python Numpy向量之间的欧氏距离实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。