Keras使用ImageNet上预训练的模型方式

(编辑:jimmy 日期: 2024/11/14 浏览:2)

我就废话不多说了,大家还是直接看代码吧!

import keras
import numpy as np
from keras.applications import vgg16, inception_v3, resnet50, mobilenet
 
#Load the VGG model
vgg_model = vgg16.VGG16(weights='imagenet')
 
#Load the Inception_V3 model
inception_model = inception_v3.InceptionV3(weights='imagenet')
 
#Load the ResNet50 model
resnet_model = resnet50.ResNet50(weights='imagenet')
 
#Load the MobileNet model
mobilenet_model = mobilenet.MobileNet(weights='imagenet')

在以上代码中,我们首先import各种模型对应的module,然后load模型,并用ImageNet的参数初始化模型的参数。

如果不想使用ImageNet上预训练到的权重初始话模型,可以将各语句的中'imagenet'替换为'None'。

补充知识:keras上使用alexnet模型来高准确度对mnist数据进行分类

纲要

本文有两个特点:一是直接对本地mnist数据进行读取(假设事先已经下载或从别处拷来)二是基于keras框架(网上多是基于tf)使用alexnet对mnist数据进行分类,并获得较高准确度(约为98%)

本地数据读取和分析

很多代码都是一开始简单调用一行代码来从网站上下载mnist数据,虽然只有10来MB,但是现在下载速度非常慢,而且经常中途出错,要费很大的劲才能拿到数据。

(X_train, y_train), (X_test, y_test) = mnist.load_data()

其实可以单独来获得这些数据(一共4个gz包,如下所示),然后调用别的接口来分析它们。

Keras使用ImageNet上预训练的模型方式

mnist = input_data.read_data_sets("./MNIST_data", one_hot = True) #导入已经下载好的数据集,"./MNIST_data"为存放mnist数据的目录

x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels

这里面要注意的是,两种接口拿到的数据形式是不一样的。 从网上直接下载下来的数据 其image data值的范围是0~255,且label值为0,1,2,3...9。 而第二种接口获取的数据 image值已经除以255(归一化)变成0~1范围,且label值已经是one-hot形式(one_hot=True时),比如label值2的one-hot code为(0 0 1 0 0 0 0 0 0 0)

所以,以第一种方式获取的数据需要做一些预处理(归一和one-hot)才能输入网络模型进行训练 而第二种接口拿到的数据则可以直接进行训练。

Alexnet模型的微调

按照公开的模型框架,Alexnet只有第1、2个卷积层才跟着BatchNormalization,后面三个CNN都没有(如有说错,请指正)。如果按照这个来搭建网络模型,很容易导致梯度消失,现象就是 accuracy值一直处在很低的值。 如下所示。

Keras使用ImageNet上预训练的模型方式

在每个卷积层后面都加上BN后,准确度才迭代提高。如下所示

Keras使用ImageNet上预训练的模型方式

完整代码

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.callbacks import ModelCheckpoint
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #tensorflow已经包含了mnist案例的数据
 
batch_size = 64
num_classes = 10
epochs = 10
img_shape = (28,28,1)
 
# input dimensions
img_rows, img_cols = 28,28
 
# dataset input
#(x_train, y_train), (x_test, y_test) = mnist.load_data()
mnist = input_data.read_data_sets("./MNIST_data", one_hot = True) #导入已经下载好的数据集,"./MNIST_data"为存放mnist数据的目录
print(mnist.train.images.shape, mnist.train.labels.shape)
print(mnist.test.images.shape, mnist.test.labels.shape)
print(mnist.validation.images.shape, mnist.validation.labels.shape)
 
x_train = mnist.train.images
y_train = mnist.train.labels
x_test = mnist.test.images
y_test = mnist.test.labels
 
# data initialization
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
 
# Define the input layer
inputs = keras.Input(shape = [img_rows, img_cols, 1])
 
 #Define the converlutional layer 1
conv1 = keras.layers.Conv2D(filters= 64, kernel_size= [11, 11], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(inputs)
# Define the pooling layer 1
pooling1 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv1)
# Define the standardization layer 1
stand1 = keras.layers.BatchNormalization(axis= 1)(pooling1)
 
# Define the converlutional layer 2
conv2 = keras.layers.Conv2D(filters= 192, kernel_size= [5, 5], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand1)
# Defien the pooling layer 2
pooling2 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv2)
# Define the standardization layer 2
stand2 = keras.layers.BatchNormalization(axis= 1)(pooling2)
 
# Define the converlutional layer 3
conv3 = keras.layers.Conv2D(filters= 384, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand2)
stand3 = keras.layers.BatchNormalization(axis=1)(conv3)
 
# Define the converlutional layer 4
conv4 = keras.layers.Conv2D(filters= 384, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand3)
stand4 = keras.layers.BatchNormalization(axis=1)(conv4)
 
# Define the converlutional layer 5
conv5 = keras.layers.Conv2D(filters= 256, kernel_size= [3, 3], strides= [1, 1], activation= keras.activations.relu, use_bias= True, padding= 'same')(stand4)
pooling5 = keras.layers.AveragePooling2D(pool_size= [2, 2], strides= [2, 2], padding= 'valid')(conv5)
stand5 = keras.layers.BatchNormalization(axis=1)(pooling5)
 
# Define the fully connected layer
flatten = keras.layers.Flatten()(stand5)
fc1 = keras.layers.Dense(4096, activation= keras.activations.relu, use_bias= True)(flatten)
drop1 = keras.layers.Dropout(0.5)(fc1)
 
fc2 = keras.layers.Dense(4096, activation= keras.activations.relu, use_bias= True)(drop1)
drop2 = keras.layers.Dropout(0.5)(fc2)
 
fc3 = keras.layers.Dense(10, activation= keras.activations.softmax, use_bias= True)(drop2)
 
# 基于Model方法构建模型
model = keras.Model(inputs= inputs, outputs = fc3)
# 编译模型
model.compile(optimizer= tf.train.AdamOptimizer(0.001),
       loss= keras.losses.categorical_crossentropy,
       metrics= ['accuracy'])
# 训练配置,仅供参考
model.fit(x_train, y_train, batch_size= batch_size, epochs= epochs, validation_data=(x_test,y_test))

以上这篇Keras使用ImageNet上预训练的模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。