查看keras各种网络结构各层的名字方式

(编辑:jimmy 日期: 2024/11/12 浏览:2)

举例

base_model = ResNet50(weights=‘imagenet', include_top=True)
print(base_model.summary())

得到这个结果

查看keras各种网络结构各层的名字方式

补充知识:使用keras,在load_model()时,出现NameError: name '***' is not defined

是因为在构造模型是,使用了自定义的层,如Lambda()

# 文本相似度评估方式
def exponent_neg_manhattan_distance(sent_left, sent_middle, sent_right):
  '''基于曼哈顿空间距离计算两个字符串语义空间表示相似度计算'''
  return ((K.exp(-K.sum(K.abs(sent_left - sent_middle), axis=1, keepdims=True)) - K.exp(-K.sum(K.abs(sent_left - sent_right), axis=1, keepdims=True))) + 1) / 2
 
def bilstm_siamese_model():
  '''搭建孪生网络'''
  #可以在这里调参
  embedding_layer = Embedding(VOCAB_SIZE + 1,
                EMBEDDING_DIM,
                weights=[embedding_matrix],
                input_length=MAX_LENGTH,
                trainable=True, #原本为False
                mask_zero=True)
  #输入层
  left_input = Input(shape=(MAX_LENGTH,), dtype='float32', name="left_x") #("middle_x") #("color: #ff00ff">解决办法:

查看keras各种网络结构各层的名字方式

在load_model的时候,加一个custom_objects参数就可以了,即

model = load_model(model_path,custom_objects={'exponent_neg_manhattan_distance': exponent_neg_manhattan_distance}) #对自定义层一定要说明

注:用Google搜bug比用baidu搜质量会高不少。

以上这篇查看keras各种网络结构各层的名字方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?