pandas apply使用多列计算生成新的列实现示例

(编辑:jimmy 日期: 2025/2/25 浏览:2)

在python数据分析中,有时需要根据多列数据生成中间结果,pandas给我们带来了很多方便,通常简短的代码可以实现一些高级功能,灵活掌握一些技巧可以事倍功半

pandas的apply方法用于对指定列的每个元素进行相同的操作,下面生成一个dataFrame用于演示:

import pandas as pd
a=range(5)
b=range(5,10)
c=range(10,15)
data=pd.DataFrame([a,b,c]).T
data.columns=["a","b","c"]
print(data)

上面的代码生成的数据如下:

   a  b   c
0  0  5  10
1  1  6  11
2  2  7  12
3  3  8  13
4  4  9  14

下面使用使用a,b两列相加生成x1列

data["x1"]=data[["a","b"]].apply(lambda x:x["a"]+x["b"],axis=1)

结果如下:

   a  b   c  x1
0  0  5  10   5
1  1  6  11   7
2  2  7  12   9
3  3  8  13  11
4  4  9  14  13

关键的参数是axis=1,指定计算的方向是行而不是列,默认是0,也就是按列进行计算

一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?